十二 11

gene symbol 中的奇怪开头基因

这本是我为论坛的基础板块写的一个基础知识点,但是浏览量实在有限,不忍它蒙尘,特在博客重新发布一次!原帖见:http://www.biotrainee.com/thread-511-1-1.html

gene symbol 是非常官方的,由HUGO 组织负责维护,有专门的数据库HGNC database of human gene names | HUGO
以前分析数据的时候,有一些基因的symbol很奇怪,让我百思不得其解,比如
C orf 系列基因,
HS.系列基因,
KRTAP系列基因,
LOC系列基因,
MIR系列基因,
LINC系列基因
它们往往一个系列,就有好几百个基因;
C12orf44; Chromosome 12 Open Reading Frame 44;  这个是C orf系列基因的意思
MIR系列基因应该是 miRNA相关的基因
LINC系列基因应该就是long intergenic non-protein coding RNA
LOC系列基因,是非正式的,推定的,日后可能被更合适的名字替代
我这里做好了所有的基因对应关系,去生信菜鸟团QQ群里下载吧,共47938个基因的symbol和entrez gene id还有name,还有alias的对应!

1
还有一些RNA基因,根本就没有symbol,比如:CTA/B/C/D系列的
Aliases for ENSG00000271971 Gene
Quality Score for this RNA gene is 1
Aliases for ENSG00000271971 Gene
CTD-2006H14.2 5
External Ids for ENSG00000271971 Gene
Ensembl: ENSG00000271971
还有,如果你看到HS.开头的基因,它是unigene的ID了,已经不再是symbol啦。

十二 11

用R获取芯片探针与基因的对应关系三部曲-NCBI下载对应关系

这是系列文章,请先看:

用R获取芯片探针与基因的对应关系三部曲-bioconductor

ncbi现有的GPL已经过万了,但是bioconductor的芯片注释包不到一千,虽然bioconductor可以解决我们大部分的需要,比如affymetrix的95,133系列,深圳1.0st系列,HTA2.0系列,但是如果碰到比较生僻的芯片,bioconductor也不会刻意为之制作一个bioconductor的包,这时候就需要自行下载NCBI的GPL信息了,也可以通过R来解决:

##本质上是下载一个文件,读进R里面,然后解析行列式,得到芯片探针与基因的对应关系,看下面的代码,你就能理解了。 Continue reading

十二 10

解决阿里云博客的虚拟主机升级问题

首先感谢生信菜鸟团的各个小伙伴的大力支持,在阿里云的2年免费虚拟主机到期之后,我成功了续费了,但是坑爹的阿里云居然把我的IP地址和用户名都给替换了,导致了一些莫名其妙的bug。
虽然只是warning,不影响网站访问,但实在是影响界面美观,如下:
1

Continue reading

十二 09

【直播】我的基因组(十二):先粗略看看几个基因吧

昨天我们说到,测序得到的fastq文件map到基因组之后,我们通常会得到一个sam或者bam为扩展名的文件。SAM的全称是sequence alignment/map format,而BAM就是SAM的二进制文件。通常sam文件太大,我们会生成bam文件来节省空间。sam文件和bam文件的转换用samtools这个软件就可以完成。

samtools view -h abc.bam > abc.sam
samtools view -b -S abc.sam > abc.bam

我们已经拿到了bam文件,我这里就先用公司给我的bam文件吧,根据我的帖子:仅仅对感兴趣的基因call variation ,可以先了解几个比较有趣的基因的变异情况。我自己呢,对以下几个位点和基因比较感兴趣,就用他们来讲一下今天的内容吧!

1.STAT4上的rs7574865和HLA-DQ的 rs9275319是中国人群中乙型肝炎病毒(HBV)相关肝细胞癌(HCC)遗传易感基因

2.V1aR基因是雄性标志性出轨基因。

3.GLI3和PAX1基因控制鼻孔的大小,而RUNX2基因控制鼻梁的宽度。DCHS2基因调控鼻子的突起程度,即决定鼻尖是否朝上和鼻尖的角度,或者说它决定了你的鼻子是否迷人挺拔。

4.肥胖有关的基因FTO(Fat Mass and Obesity Associated),最近发现了调控肥胖(主要是脂肪燃烧)的基因是IRX3 和IRX5。大约100个基因位点与BMI(身体质量指数)相关,600个基因位点与身高相关,160个基因位点与肥胖特征如腰臀比相关。6个新基因位点,这些位点位于LEMD2、CD47、GANAB、RPS6KA5/C14orf159、ANP32和ARL15基因内或周围。

那,我们就先关注这几个基因吧(不要问我为什么(-_-メ) )。

首先找到这些基因的坐标,看到如下:

其中V1aR基因这个雄性标志性出轨基因,在标准的基因命名系统里面其实是AVPR1A:http://www.genecards.org/cgi-bin/carddisp.pl?gene=AVPR1A ,这里面涉及到HUGO symbol的概念,这个genecard数据库也非常赞,基因相关信息都可以在这里面查找的。

有了这些坐标信息,我们就进入我们的基因组工作目录:

cd data/project/myGenome/

然后把坐标文件做好

因为公司给我的bam文件里面,用的参考基因组是GRCh37而不是hg19(两者区别在于chr是否标记),我们还是需要下载;

cd ~/reference

mkdir -p  genome/human_g1k_v37  && cd genome/human_g1k_v37

# http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

nohup wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz  &

gunzip human_g1k_v37.fasta.gz

wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.fai

wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/README.human_g1k_v37.fasta.txt

然后回到基因组工作目录,保证bam文件在上图中bamFiles那个目录,然后用下面这个脚本,批量提取我们感兴趣的基因的变异情况:

cat key_gene.list |while read id;

do

chr=$(echo $id |cut -d" " -f 1|sed 's/chr//' )

start=$(echo $id |cut -d" " -f 2 )

end=$(echo $id |cut -d" " -f 3 )

gene=$(echo $id |cut -d" " -f 4 )

echo $chr:$start-$end  $gene

samtools mpileup -r  $chr:$start-$end   -ugf ~/reference/genome/human_g1k_v37/human_g1k_v37.fasta bamFiles/P_jmzeng.final.bam  | \

bcftools call -vmO z -o $gene.vcf.gz

done

等三分钟就好了,结果如下:

前面我们说到有研究表明STAT4上的rs7574865和HLA-DQ的 rs9275319是国人群中乙型肝炎病毒(HBV)相关肝细胞癌(HCC)遗传易感基因,那么我们很容易去dbSNP数据库或者我最近强烈推荐 的snpedia数据库(吐血推荐snpedia数据库,非常丰富的snp信息记录)里面找到它的坐标。

6 32666295 :Rs9275319--HLA-DQ

2 191964633 :Rs7574865--STAT4

然后我检查了我刚才call到的variation文件,

zcat STAT4.vcf.gz |grep -w 191964633 显示为空。

zcat HLA-DQ* |grep 32666295  也是空。

哈哈,我完美的错过了这两个易感位点!!!!谢天谢地!!!

其余的我就不讲了,毕竟会涉及到隐私,我就讲这个方法吧!

文:Jimmy、吃瓜群众

图文编辑:吃瓜群众

十二 09

【直播】我的基因组(十):测序数据质量控制

质控之前我们在直播八的时候分析过,公司也给了我质控后的的数据,但是毕竟是别人做的,我们做为一个数据分析师,自己动手来验证一下公司给出的报告也是再好不过的了。大家可以跟着我先将下载数据进行一下质控。

因为此直播系列走得是半科普半技术路线,所以我这里show一个最常用也是最简单的测序质量控制软件,大名鼎鼎的fastqc软件,它是一个java软件,功能很单一,就是对你的测序数据生成一个网页版的可视化检测报告而已。这个软件的安装可以查看之前的直播贴(【直播】我的基因组(八):原始测序数据质量报告)。它在在linux或者windows平台都可以使用。直接下载这个压缩包: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.5.zip

我比较喜欢把这些软件放在biosoft文件夹下面(个人windows电脑),这个软件安装后会自带一些数据,大家感兴趣可以查看一下。

由于fastqc是免安装软件,直接解压后就可以直接使用。解压打开里面后缀是 .bat (相对于windows平台的批处理程序)的文件就打开fastqc啦,然后导入数据开始分析即可,静候一两个小时。

如果你用的是linux服务器,可以直接用unzip解压fastqc的zip压缩文件。里面有个fastqc的文件,就是fastqc的程序了。我们可以用fastqc  -o output dir [-(no)extract] [-f fastq|bam|sam] [-c contaminant file] seqfile1 .. seqfileN的命令让它进行质量控制。-o是用来指定输出文件的目录,注意是这里是不能自动新建目录的。输出的结果是.zip文件,默认自动解压缩,-noextract则不解压缩。-f用来强制指定输入文件格式,默认会自动检测。-c用来指定一个contaminant文件,fastqc会把overrepresented sequences往这个contaminant文件里搜索。后面加上你要质控的序列的文件名就可以了。

把所有的fastq.gz文件用fastqc软件处理得到的测序质量检测报告是一个html文件加上一个文件夹,如果没有解压缩需要用命令ls *zip|while read id;do unzip $id;done,把所有压缩包批量解压开。可以看到对每个测序数据它都进行了十几项统计结果和可视化的图片,对该款软件的结果感兴趣的可以下载(http://www.biotrainee.com/jmzeng/sickle/sickle-results.zip) 文件,对原始数据处理前后的fastqc报告的区别显而易见。

然后批量抓取里面的%GC,Total sequences等信息,来跟之前公司给我的报告做比较,看看公司给我的结果有什么出入!

我以前写过帖子关于如何得到fastqc的统计表格:写脚本对fastqc的结果进行统计咯!


也就是说把多个qc的结果通过脚本整理在一起,方便查看。我们的统计结果如下:

当然一般不会有什么差别的,而且fastqc跑出来的结果都是合格的,公司对raw data得到clean的步骤仅仅是过滤掉不合格的reads,全部丢弃,而不是截断,豪气!!!

因为illumina的X10机器跑出来的数据一般都非常不错,我就没有在这里面下太多功夫,只是走个流程看一下测序质量,的确非常好,大家如果遇到质量比较差的数据,可以去我博客里面寻找各种解决方案。当然,质量控制不只是看序列的质量,还有很多小技巧,我会在后面的帖子里面专项讲解,比如我的数据是5条lane的数据合并起来的,那么lane的上样品是一定正确吗,那些没有比对上的reads是什么之类的相关问题。

请扫描以下二维码关注我们,获取直播系列的所有帖子!

1

十二 09

【直播】我的基因组(十一):测序数据的比对

上一次直播中,我们对拿到手的测序数据进行了质控,测序数据的质量已经得到了保证。那么接下来就可以把它拿来与参考基因组比对了,这里我们先用参考基因组hg19,大家可以参照【直播】我的基因组(五):测试数据及参考基因组的准备来下载参考基因组hg19,我这里选择的是UCSC提供的hg19。然后安装bwa软件进行比对,可以参考【直播】我的基因组(四):计算资源的准备来安装,以及对hg19建立索引。

我们首先简单讲一下为什么要进行比对以及比对过程是怎样的?

可以看到我们到手的测序数据格式是fastq,每条reads都是150个碱基组成,如果只看这fastq,我们没办法得知它的意义,参考基因组那么大(人类约30亿个碱基),这个reads在我们基因组的哪里呢?

简单解释一下,假设人类基因组是123456789,如果我们的测序得到的reads是123,那么我们很明显知道这条reads在基因组的第一个位置,跨越了3个长度,如果我们的reads是567,那么我们也可以看到它在基因组的第5个位置。如果我们看到了一个reads是235567,同样我们也很容易看到它在基因组第2位置,但是在第3个位置参考是4,它却是5,这里可能是测序错误,也可能是这个reads真的变异了!

但是我们的参考基因组远远没有那么简单,30亿个碱基的庞大数目,测序的一条reads也有150个碱基,仅仅用肉眼观察基本不可能判断出它到底在哪里。但并非一定观察不到,如果你有多的不可计的时间及精力的话,手工比对穷极一生来搞定一条reads的比对就很不容易了(当然肯定不会有人这么傻,这里只是说数据量真的很大而已)。然而在我们手上可是有8.9亿条reads,所以我们需要借助计算机来进行比对,现在比较流行的基因组比对工具是bwa和bowtie,它俩的算法不一样,但是我们不需要了解那么具体,只需要知道它可以把我们的fastq测序文件通过与参考基因组的比对生成sam格式(自行搜索了解该格式)的比对结果文件(如下),从sam文件中,我们可以看到每条reads在参考基因组的位置,这条reads是在哪一条染色体,又是在这条染色体的哪个位置就可以一目了然。

对于比对的结果,我们可以用IGV可视化查看,还可以手动查看每个基因的比对情况:

下面我简单讲一下代码

1,下载hg19基因组

cd ~/reference

mkdir -p genome/hg19  && cd genome/hg19

nohup wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz &

tar zvfx chromFa.tar.gz

cat *.fa > hg19.fa

rm chr*.fa

首先要理解linux基础命令,在我们的服务器上面新建好目录,找到hg19的下载链接,用linux自带的wget下载,因为文件太大,所以我们用nohup放在后台下载。下载后是压缩文件 chromFa.tar.gz,在linux里面需要用tar zvfx 来解压tar.gz文件即可。解压开后是一个个文件,需要用cat合并!最终效果如下:

2,安装bwa软件

## Download and install BWA

cd ~/biosoft

mkdir bwa &&  cd bwa

#http://sourceforge.net/projects/bio-bwa/files/

wget https://sourceforge.net/projects/bio-bwa/files/bwa-0.7.15.tar.bz2

tar xvfj bwa-0.7.15.tar.bz2 # x extracts, v is verbose (details of what it is doing), f skips prompting for each individual file, and j tells it to unzip .bz2 files

cd bwa-0.7.15

make

~/biosoft/bwa/bwa-0.7.15/bwa

我所有的软件都安装在自己的home目录下面的biosoft文件夹。同样,也是找的bwa的下载地址,然后解压,然后直接make即可。很多人的服务器会报错zlib.h缺少的问题,看我以前的教程:http://www.bio-info-trainee.com/518.html ,缺少什么你就安装什么,但是缺少的东西需要安装到系统环境变量,但是我的bwa是直接安装到自己的目录,所以我用全路径在调用该软件。如果你的这个命令~/biosoft/bwa/bwa-0.7.15/bwa  能够显示下面的help文档,说明你已经安装成功啦~

3,对hg19参考基因组用bwa构建索引

cd ~/reference

mkdir -p index/bwa && cd index/bwa

nohup time ~/biosoft/bwa/bwa-0.7.15/bwa index   -a bwtsw   -p ~/reference/index/bwa/hg19  ~/reference/genome/hg19/hg19.fa 1>hg19.bwa_index.log 2>&1   &

代码很简单,就是新建好一个文件夹来存放我们的参考基因组的索引,我这里选择的是我的home目录下面的reference/index/bwa/ 文件夹,可以看到如下内容:

我还是用了nohup把这个命令挂在后台,防止掉线,因为要运行2个小时左右,我加上time命令可以看到运行时间,我用了bwa的index模式来索引参考基因在,具体bwa用法可以自己看文档,但是我们只需要学会索引及比对就好了。有点类似于window下面的软件有一个个菜单栏一样,需要自己的鼠标点击来实现一个个功能,在linux下面就是把命令准备好,然后运行。

4.把fastq文件比对到参考基因组

for i in $(seq 1 6) ;do (nohup ~/biosoft/bwa/bwa-0.7.15/bwa  mem -t 5 -M ~/reference/index/bwa/hg19  KPGP-00001_L${i}_R1.fq.gz KPGP-00001_L${i}_R2.fq.gz 1>KPGP-00001_L${i}.sam 2>KPGP-00001_L${i}.bwa.align.log &);done

这个命令就一句话,但是里面的信息量非常大, 需要熟练掌握linux命令以及shell脚本的语法,但是解析起来也很简单,就是因为我们的fastq文件命名是有规律的,根据规律我构造出一个循环命令,里面的i这个变量会自动扩展成1,2,3,4,5,6依次来用bwa  mem 模式来比对,因为是PE150测序,所以选择这个模式,-M就是选择我们上一步构建好的参考基因组,最后面的 1> 和2>是把软件运行结果输出来,分别是标准输出和标准错误输出,大家可以自行搜索。如果fastq文件的命名发生变化,这个shell脚本是运行不了的,需要临时构建,自己得掌握脚本编写,不然就一个个的比对,手动。

大家可以去看【直播】我的基因组(七):从整体理解全基因组测序数据的变异位点,来了解这个命令的运行结果。

请扫描以下二维码关注我们,获取直播系列的所有帖子!

1

十二 09

【直播】我的基因组(九):拿到数据后要做的事情

时隔好几个月,因为各种各样的原因数据终于拿到了自己的手上,真是不容易啊!

拿到数据后,第一件要做的事情就是检查数据传输的完整性,然后备份!我拿到的数据如下:

可以看到,公司给了我测序仪的下机数据(raw data)和他们质控后的clean data,这个过程减少了6G的数据量,对应着约90亿bp的碱基,相当于减少了3个人的全基因组数据。具体推算公式见前面的系列直播贴!

首先我把数据拷贝到了我上上周买的2T移动硬盘里面,再拷贝到我工作电脑一份,服务器一份,私人电脑一份,另外一个移动硬盘一份。然后删除了公司寄给我的硬盘里面的数据,再把硬盘寄回给公司,然后监督他们删除我所有的数据。(做这么多就是为了保护隐私,当然这个大前提是我已经确定数据没有问题了。)

检查数据传输的完整性就是md5校验,看看数据在拷贝过程中有没有意外的损坏(这个在之前下载数据的时候我也说过)!一般传输数据之前,会用md5命令来生成各个文件的md5值,就是下面的MD5.txt文件里面的内容,然后传输数据之后,需要自行用md5sum -c MD5.txt 来校验文件里面记录的文件的完整性,如果显示都是OK,说明文件拷贝传输过程是没有问题的!但这个过程会耗费大量的磁盘读写,磁盘读写能力是有限的,所以开多个进程并不能加快这一过程。

然后我把公司处理好的bam文件上传到服务器做下游分析,我用的winscp软件把文件传到服务器上的!

从明天起,我们就开始正式对基因组进行分析啦!欢迎围观!

请扫描以下二维码关注我们,获取直播系列的所有帖子!

1

十二 01

GSEA的统计学原理试讲

GSEA这个java软件使用非常方便,只需要根据要求做好GCT/CLS格式的input文件就好了。我以前也写个用法教程:

但说到统计学原理,就有点麻烦了,我试着用自己的思路阐释一下:
假设芯片或者其它测量方法测到了2万个基因,那么这两万个基因在case和control组的差异度量(六种差异度量,默认是signal 2 noise,GSEA官网有提供公式,也可以选择大家熟悉的foldchange)肯定不一样,那么根据它们的差异度量,就可以对它们进行排序,并且Z-score标准化,在下图的最底端展示的就是

Continue reading

十二 01

吐血推荐snpedia数据库,非常丰富的snp信息记录

正好,我拿到了自己的全基因组测序数据,而前些天看到朋友圈推送的文章提到有研究表明STAT4上的rs7574865和HLA-DQ的 rs9275319是国人群中乙型肝炎病毒(HBV)相关肝细胞癌(HCC)遗传易感基因,我就想顺便看看自己在这两个位点的变异情况。一般的流程是先找完变异位点,然后用vep/snpEFF对变异位点进行注释,然后看看有没有这两个位点。但我仅仅是想查看这两个位点,所以我会根据它的rsID来找到它的基因组坐标,再直接call这个位置的变异情况。以前我都是用dnSNP来查看rsID的基因组坐标的,
mkdir -p ~/annotation/variation/human/dbSNP
cd ~/annotation/variation/human/dbSNP
## https://www.ncbi.nlm.nih.gov/projects/SNP/
## ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b147_GRCh38p2/
## ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b147_GRCh37p13/
nohup wget ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b147_GRCh37p13/VCF/All_20160601.vcf.gz &
wget ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b147_GRCh37p13/VCF/All_20160601.vcf.gz.tbi

Continue reading

十一 29

如何安装别人开发的未发表的包

我以为我写完了R包终极解决方案! 之后,应该不会再有任何关于R包安装的问题产生了,但仔细回过头来看才发现,我介绍的都是如何从CRAN或者bioconductor里面安装正规发布的包,但是有很多人开发的是自己私人的包,而我们有的确非常需要用怎么办??这个时候就需要下载别人开发的包来安装了。比如我R包地址见github:https://github.com/jmzeng1314/humanid  Continue reading

十一 29

如何开发自己的R包

随着R语言的流行度的提高,开发一个R包已经不再是专业程序猿才有的技能了。我这里讲的不是如何写一个包含了复杂统计公式或者发表一篇SCI文章的包,而是简简单单的用Rstudio自带的创建包的功能把自己的几个函数和数据打包!!!我R包地址见github:https://github.com/jmzeng1314/humanid Continue reading

十一 29

R来完成表达芯片分析全流程

包括如何从GEO下载数据,如何分组,两组直接如何找差异,差异基因如何去注释,包括GO/KEGG注释,还有特殊数据库,自定义数据库的注释,比如oncogene或者tumor suppress genes,TF的gene注释,还有GSEA软件的分析。
然后是对选择好的差异基因去string等PPI数据库拿到网络数据,在R或者cytoscape里面画网络图,然后是用MCODE插件和bioNet包来对网络找sub-network或者module,和hub genes。
就拿GSE42872 这个数据来做例子吧,希望听众具有基础R知识,了解什么是bioconductor,然后具有基础生物学知识,知道什么是基因,什么是表达,什么是通路,什么是富集,什么是注释。
总共10讲,每次半小时,每周3,4,6的晚上十一点开讲!
讲义的草稿如下,如果你能看懂草稿,能自己学会,就不用参加本次课程啦。
如果需要问我问题,就赶快找我申请加入交流群,提供本次培训的全套视频和代码!!!

Continue reading

十一 28

R语言画网络图三部曲之igraph

经过热心的小伙伴的提醒,我才知道我以前写的R语言画网络图三部曲竟然漏掉了最基础的一个包,就是igraph,不了解这个,后面的两个也是无源之水。

R语言画网络图三部曲之networkD3

R语言画网络图三部曲之sna

其实包括了3个包:igraph/RBGL/Rgraphviz
用到了一个测试数据,是构建好的PPI网络对象:We will first analyse a curated data set of protein-protein interactions in the yeast Saccharomyces cerevisiae extracted from published papers. This data set comes from with an R package called “yeastExpData”, which calls the data set “litG”. This data was first described in a paper by Ge et al (2001) in Nature Genetics (http://www.nature.com/ng/journal/v29/n4/full/ng776.html).

Continue reading

十一 25

hisat2+stringtie+ballgown

早在去年九月,我就写个博文说 RNA-seq流程需要进化啦! http://www.bio-info-trainee.com/1022.html  ,主要就是进化成hisat2+stringtie+ballgown的流程,但是我一直没有系统性的讲这个流程,因为我觉真心木有用。我只用了里面的hisat来做比对而已!但是群里的小伙伴问得特别多,我还是勉为其难的写一个教程吧,你们之间拷贝我的代码就可以安装这些软件的!然后自己找一个测试数据,我的脚本很容易用的! Continue reading

十一 25

用BioNet这个bioconductor包来找 maximal-scoring subgraph

## 此包是为了解决一个难题: maximal-scoring subgraph (MSS) problem ,在一个巨大的复杂网络里面找到significantly differentially expressed subnetworks,就是说,得到了几百个差异基因,去PPI数据库做网络图的时候,发现还是巨大无比,所以需要用这个包来精简我们的网络图。
heuristically的中文意思:启发性地
## 而这个R包可以整合多种数据结果来给一个网络打分,
它整合了PPI网络分析和寻找功能模块的需求。
重点就是根据一个"igraph" or "graphNEL"对象和打分来找最大的MSS
subnet <- subNetwork(dataLym$label, interactome)
module <- runFastHeinz(subnet, scores)
plotModule(module, scores=scores, diff.expr=logFC) #这个就是精简后的我们的网络图。
其实另外一个函数也有类似的功能,dNetFind https://rdrr.io/cran/dnet/man/dNetFind.html

Continue reading

十一 25

最终还是把博客的全半角中英文标点符合的bug解决了

已经有非常多的小伙伴跟我反映了直接拷贝我的代码无法运行的问题,其实报错的原因很简单,就是中英文标点的bug而已。所以我给大家的理由是不用那么懒,拷贝我的代码,我就是希望你们能手动敲打每一个命令,来熟练记忆使用。
其实,我没那么好心,我就是懒而已。因为这个博客是host在阿里云的免费服务器上面的,各种IP密码我懒得去记忆,就差不多忘记了。当初弄好了我就懒得管了,正好现在博客免费时期快到了,也就想把这个问题解决掉。

我很简单搜索了一下,http://shiyun1013.blog.163.com/blog/static/10774036201301824446708/ 需要连接我博客的ftp,去修改博客里面的文件,

<?php remove_filter('the_content','wptexturize'); ?>  正好看看这个标点符号被改变了吗?
好像还不错,以后大家就可以直接拷贝我的代码去运行啦!
下面是我登陆了ftp,发现以前用rmarkdown写的几个教程,感兴趣的小伙伴可以随便看看!

Continue reading

十一 25

kegg在线链接图的颜色设置

一般来说, 有了kegg的ID,就可以直接去官网查看具体的通路图片,但是需要把差异基因给标注上去,就有点麻烦了,我以前做过类似的工作,结果没有做笔记,这次相当于重新造了个轮子,好惨!
简单的KEGG图片,看下面的url:
如果要做下面的这个,上调基因用红色表示,下调基因用绿色表示:

Continue reading

十一 24

cytoscape五步曲之二:在cytoscape里面生成网络图

通过上一讲大家应该明白了,网络图是为了展现分子之间的连接关系的,并不是一定要用cytoscape来做,只需要根据连接关系给我们的所有点安排一个坐标,然后把相应的线连接起来即可!那么既然我们要学习cytoscape,肯定是要用cytoscape做好第一步,就是根据输入数据来做网络图。
可以先了解一下cytoscape定义好的输入数据,
http://wiki.cytoscape.org/Cytoscape_User_Manual/Network_Formats 当然,其实木有意义!因为我们不可能拿到cytoscape的输入文件(cys格式的),除非是你朋友传给你的。我们肯定是根据txt.csv等分割的文本文件来做网络图。

Continue reading

十一 24

cytoscape五步曲之一:明白什么是网络图

想了想还是写一个系列教程吧,问的朋友也太多了,主要是因为cytoscape跟python一样,经历了从2到3的进化阵痛过程,而且进化的面目全非了!!!很多人拿着2.x的说明书教程,视频,然后下载的却是3.x版本的cytoscape,真可怕!!!
已经从两万个芯片探测到的基因里面找到了近千个差异基因了,对它们做了GO/KEGG分析还是抓不住重点,看到文献说可以用PPI数据库做network analysis之后找hub基因,也也许可以说明一些问题!
提到 network analysis ,我想起来我以前总结过 R语言画网络图的三部曲,里面讲到过网络分析的基本原理!

Continue reading